# Ways to write Traditional WORD Count Program in Map Reduce, Apache PIG and HIVE in Hadoop Eco System
- WordCount Program in Map Reduce
import java.io.IOException;
import java.util.StringTokenizer;
import
org.apache.hadoop.conf.Configuration;
import
org.apache.hadoop.fs.Path;
import
org.apache.hadoop.io.IntWritable;
import
org.apache.hadoop.io.Text;
import
org.apache.hadoop.mapreduce.Job;
import
org.apache.hadoop.mapreduce.Mapper;
import
org.apache.hadoop.mapreduce.Reducer;
import
org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object,
Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text
value, Context context
) throws IOException,
InterruptedException {
StringTokenizer
itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())
{
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends
Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key,
Iterable<IntWritable> values,
Context context
) throws IOException,
InterruptedException {
int sum = 0;
for (IntWritable val :
values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
PIG
Output
- WordCount Program in HIVE
CREATE TABLE FILES (line STRING);
LOAD DATA INPATH 'docs' OVERWRITE INTO TABLE FILES;
CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, ' ')) AS word FROM FILES) w
GROUP BY word
ORDER BY word;
HIVE
Output
No comments:
Post a Comment